חAmIBIA UחIVERSITY
 OF SCIEMCE AMD TECHחOLOGY
 FACULTY OF ENGINEERING AND THE BUILT ENVIRONMENT

DEPARTMENT OF LAND AND SPATIAL SCIENCES

QUALIFICATIONS: BACHELOR OF GEOMATICS and DIPLOMA IN GEOMATICS	
QUALIFICATIONS CODES: O7BGEO, 06DGEO	QUALIFICATION LEVEL: Level 7-07BGEO Level 6-06DGEO
COURSE CODE: BSV521	COURSE NAME: Basic Surveying
DATE: June 2023	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER:	Mr F. J. Louw
MODERATOR:	Mr S. Sinvula

INSTRUCTIONS

1. You MUST answer ALL QUESTIONS
2. Write clearly and neatly.
3. Number the answers clearly.
4. Make sure your Student Number is on the EXAMINATION BOOK(s).
5. MAKE SURE YOUR STUDENT NUMBER IS ON THE DATA SHEET AND THAT YOU SUBMIT IT WITH YOUR EXAMINATION BOOK(S).

PERMISSIBLE MATERIALS

1. Calculator, ruler, pen, pencil, and eraser.

THIS QUESTION PAPER CONSISTS OF 8 PAGES (Including this front page and 3 Data Sheets)

Question 1

1.1. Surveying can be divided into fieldwork and office work, briefly explain BOTH.
1.2. List the TWO principal classifications of surveying. Fully explain BOTH.
1.3. Setting out is the process of using surveying equipment and techniques to transfer information from a plan to the ground. Describe the THREE distinct elements of setting out.
1.4. Briefly explain the FOUR important aspects of a resection.
1.5. Briefly describe the term "Trigonometrical Levelling".

Question 2

2.1. Use the levelling observations given in Data Sheet 1 or Data Sheet 2 to determine the final heights using ANY METHOD which provides a full arithmetic check. All usual checks must be done, and any mis-closures need to be distributed. Please detach the data sheet and submit it with your examination book.
2.2. Use the field observations at $K 15$, to calculate the final observed directions.
@K15 $\mathrm{HI}=1.655 \mathrm{~m}$

Point	Circle Left	Circle Right
$\Delta C C$	$299^{\circ} 02^{\prime} 38^{\prime \prime}$	$119^{\circ} 02^{\prime} 34^{\prime \prime}$
K2	$309^{\circ} 48^{\prime} 06^{\prime \prime}$	$129^{\circ} 47^{\prime} 55^{\prime \prime}$
Gate	$255^{\circ} 14^{\prime} 53^{\prime \prime}$	$75^{\circ} 15^{\prime} 03^{\prime \prime}$
$\Delta R C C S$	$271^{\circ} 46^{\prime} 42^{\prime \prime}$	$91^{\circ} 46^{\prime} 44^{\prime \prime}$
RO	$299^{\circ} 02^{\prime} 33^{\prime \prime}$	$119^{\circ} 02^{\prime} 31^{\prime \prime}$

2.3. Use the information below to calculate the final vertical directions at point K15.
@K15 $\mathrm{HI}=1.655 \mathrm{~m}$

Point	Circle Left	Circle Right
\triangle CC	$85^{\circ} 56^{\prime} 58^{\prime \prime}$	$274^{\circ} 03^{\prime} 08^{\prime \prime}$
K2	$92^{\circ} 49^{\prime} 17^{\prime \prime}$	$267^{\circ} 10^{\prime} 37^{\prime \prime}$
Gate	$94^{\circ} 05^{\prime} 59^{\prime \prime}$	$265^{\circ} 54^{\prime} 05^{\prime \prime}$

Question 3

3.1. Use the following Formula and the observations at RP1, to answer the questions that follow.

Please note:

The Instrument Correction and Prism Constant, the Atmospheric Correction, and the Conversion to German Legal Metre are already applied to all measured distances.

Combined Sea level \& Scale Enlargement Factor $=1+\left[\left(y^{2} /\left(2 R^{2}\right)\right)-(H / R)\right]$, where $R=6370 \mathrm{~km}$.

Coordinates

Name	Y	X	Height	
$\triangle \mathrm{CC}$	-9053.130	+ 62813.860		
$\Delta \mathrm{CC}$	- 8555.090	+ 62481.930		
RP1	- 8146.180	+ 62570.831	1666.66	
@ RP1	Height of the Instrument is 1.658 m .			
Name	Final Observed Direction		Slope Distance	Zenith Angle
\triangle RCCS	$257^{\circ} 44^{\prime} 11^{\prime \prime}$			$87^{\circ} 45^{\prime} 48^{\prime \prime}$
$\triangle \mathrm{CC}$	$285{ }^{\circ} 00^{\prime \prime} 0{ }^{\prime \prime}$			$85^{\circ} 45^{\prime} 48^{\prime \prime}$
P1	$323^{\circ} 19^{\prime} 48^{\prime \prime}$		20.825 m	$91^{\circ} 35^{\prime} 35^{\prime \prime}$

3.1.1. Calculate and apply all corrections to observations at RP1 (directions \& distances).
3.1.2. Calculate the coordinates for P 1 .
3.2. Use the following Formula to calculate the height of $\mathbf{H} 1$.
$\Delta H_{a b}=H_{1}-H_{\text {sig }}+\mathrm{S}_{\mathrm{ab}} / \operatorname{Tan}(Z)+(1-k) \cdot \mathrm{S}^{2} /(2 R) \quad H_{a}=H_{b}-\Delta \mathrm{H}_{\mathrm{ab}}$
$R=6370000 m) \quad k=0.13$

Co-ordinates

Point	Y	X	Z
Δ EROS	-10489.688	+60272.255	1810.685 (Ground Level)

The JOIN distance from H 1 to Δ EROS is 4104.000 m

@ H1	$\mathrm{HI}=1.780 \mathrm{~m}$	
Point	Zenith Angle	Height of Pillar
Δ EROS	$87^{\circ} 46^{\prime} 45^{\prime \prime}$	1.200 m (Top of Pillar)

Question 4

4.1. Calculate the final coordinates for the traverse points on Data Sheet 3. Use the said data sheet for all your calculations. Use the Bowditch Rule to adjust the traverse. Please note that the directions are oriented, and the distances are final horizontal distances. Please detach the data sheet and submit it with your examination book.

4.2. Use the following observations at NEW, to calculate the Y and X coordinates for NEW.

Please note:
The Prism Constant, the Atmospheric Correction, the Conversion to German Legal Metre, and the Combined Sea level \& Scale Enlargement Scale Factor correction are already applied to all measured distances.

Co-ordinates

Name	Y	X	Height	
Δ Moltke	-18508.640	+72023.020		
ZB3214	-26178.133	+60 627.395	1800.000	
@ NEW	$\mathrm{HI}=1.655 \mathrm{~m}$			
Point/Station	Final Observed Direction		Final Horizontal Distance	Zenith Angle
Δ Moltke	$29^{\circ} 23^{\prime} 01^{\prime \prime}$			$87^{\circ} 35^{\prime} 28^{\prime \prime}$
ZB3214	$110^{\circ} 54^{\prime} 10^{\prime \prime}$		190.613 m	$91^{\circ} 07^{\prime} 32^{\prime \prime}$

Question 5

5.1. Use the information and observations below to calculate the coordinates for the point TOP, by using the Q-point method of a resection calculation.

Co-ordinates

Name	Y	X
Δ OLYMPIA	-9728.580	+66201.950
Δ SWP	-4680.110	+62348.570
Δ WACHTER	-13105.120	+52799.350

@ TOP	Height of Instrument $=1.615 \mathrm{~m}$	
Name	Final Observed Dir.	
 \triangle SWP	$120^{\circ} 35^{\prime} 18^{\prime \prime}$	Long Leg
\triangle WACHTER	$226^{\circ} 49^{\prime} 12^{\prime \prime}$	
\triangle OLYMPIA	$328^{\circ} 24^{\prime} 50^{\prime \prime}$	

Student Number

Question 2.1.

NOTE: The BOLD and Underlined values are the Inverted Staff Readings.
Round to the nearest 3 (0.000) decimal places. Margin for error $=+/-0.002$

Question 2.1.

NOTE: The BOLD and Underlined values are the Inverted Staff Readings.
Round to the nearest 3 (0.000) decimal places. Margin for error $=+/-0.002$

POINT	BACK	INTER.	FORE	COLL.	REDUCED	CORRECTION	FINAL
	SIGHT	SIGHT	SIGHT	HEIGHT	LEVELS		LEVELS
BM 1	0.530						1676.648
A		1.088					
B		$\underline{2.207}$					
C	1.579		1.444				
D		2.151					
E	1.695		1.537				
F		$\underline{1.388}$					
G		$\underline{1.386}$					
H	1.101		1.073				
J		$\underline{1.372}$					
K		$\underline{0.778}$					
L		0.765					
BM 2			0.985				

\qquad Data Sheet 3

Question 4.1.

Bowditch Rule - Adjustment Sheet

Note: All answers must be rounded off to 3 decimal places

DIRECTION \& DISTANCE	n	DIFFERENCES		STATION	FINAL	COORDINATES
		ΔY	$\Delta \mathrm{X}$		Y	X
				A	+ 3961.307	+68371.758
$185^{\circ} 18^{\prime} 38^{\prime \prime}$	n0000000000000					
391.227 m						
				B		
$111^{\circ} 20^{\prime} 33^{\prime \prime}$						
356.826 m						
				C		
$90^{\circ} 00^{\prime} 05^{\prime \prime}$						
295.892m						
				D		
$84^{\circ} 10^{\prime} 10^{\prime \prime}$						
381.265 m						
				E	+4932.565	+ 67891.023

